Total number of printed pages-8

3 (Sem-6/CBCS) MAT HC 1

2022

MATHEMATICS

(Honours)
Paper : MAT-HC-6016
(Complex Analysis)

Full Marks : 60

Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven questions from the following:
$1 \times 7=7$
(a) If c is any nth root of unity other than unity itself, then value of
$1+c+c^{2}+\cdots+c^{n-1}$ is
(i) $2 n \pi$
(ii) 0
(iii) -1
(iv) None of the above
(Choose the correct answer)
(b) The square roots of $2 i$ is
(i) $\pm(1+i)$
(ii) $\pm(1-i)$
(iii) $\pm \frac{1}{\sqrt{2}}(1-i \sqrt{2})$
(iv) None of the above
(Choose the correct answer)
(c) A composition of continuous function is
(i) discontinuous
(ii) itself continuous
(iii) pointwise continuous
(iv) None of the above
(Choose the correct answer)
(d) The value of $\log (-e i)$ is
(i) $\frac{\pi}{2}-i$
(ii) i
(iii) $1-\frac{\pi}{2} i$
(iv) None of the above
(Choose the correct answer)
(e) The power expression of $\cos z$ is
(i) $\frac{e^{z}+e^{-z}}{2}$
(ii) $\frac{e^{i z}+e^{-i z}}{2}$
(iii) $\frac{e^{i z}+e^{-i z}}{2 i}$
(iv) None of the above
(Choose the correct answer)
(f) The Cauchy-Riemann equation for analytic function $f(z)=u+i v$ is
(i) $u_{x}=v_{y}, u_{y}=-v_{x}$
(ii) $u_{x}=-v_{y}, u_{y}=v_{x}$
(iii) $u_{x x}+v_{y y}=0$
(iv) None of the above
(Choose the correct answer)
(g) If $w(t)=u(t)+i v(t)$, then $\frac{d}{d t}[w(t)]^{2}$ is equal to
(i) $2[u(t)+i v(t)]$
(ii) $2 w^{\prime}(t)$
(iii) $2 w(t) w^{\prime}(t)$
(iv) None of the above
(Choose the correct answer)
(h) What is Laplace's equation?
(i) What is extended complex plane?
(j) What is Jordan arc?
2. Answer any four questions from the following :
$2 \times 4=8$
(a) Write principal value of $\arg \left(\frac{i}{-1-i}\right)$.
(b) If $f(z)=x^{2}+y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$, then write $f(z)$ in terms of z.
(c) Use definition to show that

$$
\lim _{z \rightarrow z_{0}} \bar{z}=\bar{z}_{0} .
$$

(d) Find the singular point of

$$
f(z)=\frac{z^{2}+3}{(z+1)\left(z^{2}+5\right)}
$$

(e) If $f^{\prime}(z)=0$ everywhere in a domain D, then prove that $f(z)$ must be constant throughout D.
(f) Evaluate $f^{\prime}(z)$ from definition, where $f(z)=\frac{1}{z}$.
(g) If $f(z)=\frac{z}{\bar{z}}$, find $\lim _{z \rightarrow 0} f(z)$, if it exists.
(h) Write the function $f(z)=z+\frac{1}{z}(z \neq 0)$ in the form $f(z)=u(r, \theta)+i v(r, \theta)$.
3. Answer any three questions from the following : $5 \times 3=15$
(a) If z_{1} and z_{2} are complex numbers, then show that
$\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}$.
(b) Show that exp. $(2 \pm 3 \pi i)=-e^{2}$.
(c) Sketch the set $|z-2+i| \leq 1$ and determine its domain.
(d) Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$, that lies in the 1 st quadrant, then show that

$$
\left|\int_{C} \frac{z-2}{z^{2}+1} d z\right| \leq \frac{4 \pi}{15}
$$

(e) Evaluate $\int_{C} \frac{d z}{z}$, where C is the top half of the circle $|z|=1$ from $z=1$ to $z=-1$.
(f) If $f(z)=e^{z}$, then show that it is an analytic function.
(g) If $f(z)=\frac{z+2}{z}$ and C is the semi circle $z=2 e^{i \theta}, \quad(0 \leq \theta \leq \pi)$, then evaluate $\int_{C} f(z) d z$.
(h) Find all values of z such that $e^{z}=-2$.
4. Answer any three questions from the following:
$10 \times 3=30$
(a) State and prove Cauchy-Riemann equations of an analytic function in polar form.
(b) Suppose that

$$
f(z)=u(x, y)+i v(x, y),(z=x+i y)
$$

$S=|\&|$ and $z_{0}=x_{0}+i y_{0}, w_{0}=u_{0}+i v_{0}$, then
ard prove that if $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0}$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}$ then $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and conversely.
(c) If the function $f(z)=u(x, y)+i v(x, y)$ is defined by means of the equation

$$
f(z)=\left\{\begin{array}{l}
\frac{\bar{z}^{e}}{z}, \text { when } z \neq 0 \\
0, \text { when } z=0
\end{array}\right.
$$

then prove that its real and imaginary parts satisfies Cauchy-Riemann equations at $z=0$. Also show that $f^{\prime}(0)$ fails to exist.
(d) If the function
$f(z)=u(x, y)+i v(x, y)$ and its
conjugate $\bar{f}(z)=u(x, y)-i v(x, y)$ are both analytic in a domain D, then show that $f(z)$ must be constant throughout D.
(e) If f be analytic everywhere inside and on a simply closed contour C, taken in the positive sense and z_{0} is any point interior to C, then prove that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

(f) State and prove Liouville's theorem.
(g) Suppose that a function f is analytic throughout a disc $\left|z-z_{0}\right|<R_{0}$ centred at z_{0} and with radius R_{0}. Then prove that $f(z)$ has the power series representation
$f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad\left(\left|z-z_{0}\right|<R_{0}\right)$
where $a_{n}=\frac{f^{n}\left(z_{0}\right)}{\underline{n}}, \quad(n=0,1,2, \ldots .$.
(h) State and prove Laurent's theorem.

