Total number of printed pages-7
3 (Sem-6/CBCS) MAT HC2

2022

MATHEMATICS

(Honours)
Paper : MAT-HC-6026
(Partial Differential Equations)

$$
\text { Full Marks : } 60
$$

Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven : $1 \times 7=7$
(i) The equation of the form
$P_{p}+Q_{q}=\mathbb{R}$ is known as
(a) Charpit's equation
(b) Lagrange's equation
(c) Bernoulli's equation
(d) Clairaut's equation
(Choose the correct answer)
(ii) How many minimum no. of independent variables does a partial
SOH differential equation require?
(iii) Find the degree and order of the equation

$$
\frac{\partial^{3} z}{\partial x^{3}}+\left(\frac{\partial^{3} z}{\partial x \partial y^{2}}\right)^{2}+\frac{\partial z}{\partial y}=\sin (x+2 y)
$$

(iv) Which method can be used for finding the complete solution of a non-linear partial differential equation of first order
(a) Jacobi method
(b) Charpit's method smiT
(c) Both (a) and (b)
(d) None of the above
(Choose the correct answer)
(v) State True Or False :

The equation

$$
u_{x x}+u_{y y}+u_{z z}=0
$$

is an Hyperbolic equation.
(vi) Fill in the blanks :
ilimonts $\left(\frac{\partial z}{\partial x}\right)^{2}+2 \frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}+z=0$
is a order partial differential equation.
$8=$ (vii) The characteristic equation of $A A=S$ $y u_{x}+x u_{y}=u$ is
(a) $\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{u}$
(b) $\frac{d x}{y}=\frac{d y}{x}=\frac{d u}{u}$
(c) $\frac{d x}{u}=\frac{d y}{x}=\frac{d u}{y}$
(d) None of the above
mori bris bleshis (Choose the correct answer)
(viii) State True Or False
noitsups $x u_{x}+y u_{y}=u^{2}+x^{2}$ is a semi-linear
vitqi partial differential equation.
(ix) Fill in the blanks :

A solution $z=z(x, y)$ when interpreted as a surface in 3-dimensional space is called \qquad $\rightarrow+\log$ (iv)
(x) The partial differential equation is elliptical if
aijiqual (a) $B^{2}-4 A C>0$ ms 1 .bseu
(b) $B^{2}-4 A C \geq 0$ bonterm
ontuilo
(c) $B^{2}-4 A C \leq 0$ nientsalV/ (iisu)
(d) $B^{2}-4 A C<0$
(Choose the correct answer)

3 (Sem-6/CBCS) MAT HC 2/G 3 Contd.
2. Answer any four : $2 \times 4=8$
(i) Define quasi-linear partial differential equation and give one example.
(ii) Show that a family of spheres $(x-a)^{2}+(y-b)^{2}=r^{2}$ satisfies the partial differential equation
$z^{2}\left(p^{2}+q^{2}+1\right)=r^{2}$
(iii) Eliminate the constants a and b from $z=(x+a)(y+b)$.

9int 9tste (ijiv)
TBS (iv) Determine whether the given equation is hyperbolic, parabolic or elliptic

$$
u_{x x}-2 u_{y y}=0
$$

(v) Solve the differential equation $p+q=1$.
(vi) Explain the essential features of the "Method of separation of variables".
(vii) Mention when Charpit's method is used. Name a disadvantage of Charpit's method.
(viii) What is the classification of the equation
$u_{x x}-4 u_{x y}+4 u_{y y}=e^{y}$
3. Solve any three : $5 \times 3=15$
(i) Form a partial differential equation by eliminating arbitrary functions f and F from $y=f(x-a t)+F(x+a t)$.
(ii) Solve

$$
y^{2} p-x y q=x(z-2 y)
$$

(iii) Find the integral surface of the linear partial differential equation
$x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line
borilom $x+y=0, z=1$. $\mathrm{pq}=\mathrm{S}_{\mathrm{s}}$ эvioz
(iv) Find the solution of the equation $z=p q$ which passes through the parabola $x=0, y^{2}=z$.
(v) Find a complete integral of the equation $x^{2} p^{2}+y^{2} q^{2}=1$
svioe (us)
vvio (vi) Reduce the equation $y u_{x}+u_{y}=x$ to canonical form and obtain the general solution.
$\mathcal{C l}_{1}=\ell$ (vii) Apply the method of separation of variables $u(x, y)=f(x) g(y)$ to solve
रd तloitas the equation $u_{x}+u=u_{y}$,
(ii) $u(x, 0)=4 e^{-3 x}$.
(viii) Determine the general solution of

$$
4 u_{x x}+5 u_{x y}+u_{y y}+u_{x}+u_{y}=2
$$

4. Answer any three : tai pilf bail $10 \times 3=30$
(i) Solve $\left(p^{2}+q^{2}\right) y-q z=0$ by Jacobi method.
(ii) Solve $z^{2}=p q x y$ by Charpit's method.
pq. (iii) Find the general solution of the
slodsted differential equation doidw

$$
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z
$$

(iv) Solve

$$
(m z-n y) p+(n x-l z) q=l y-m x
$$

(v) (v) Use $v=\ln u$ and $v=f(x)+g(y)$ to solve

Istongs the equation mol issinomss

$$
x^{2} u_{x}^{2}+y^{2} u_{y}^{2}=u^{2}
$$

(vi) Find the solution of the equation
$z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$
which passes through the x axis.
(vii) Find the canonical form of the equation $y^{2} u_{x x}-x^{2} u_{y y}=0$.
(viii) Classify the second order linear partial differential equation with example.

