Total number of printed pages-11

3 (Sem-2/CBCS) MAT HC 1

2022

MATHEMATICS
(Honours)
Paper : MAT-HC-2016
(Real Analysis)

$$
\text { Full Marks : } 80
$$

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer any ten questions : $1 \times 10=10$
(a) Find the infimum of the set

$$
\left\{1-\frac{(-1)^{n}}{n}: n \in N\right\}
$$

(b) If A and B are two bounded subsets of \mathbb{R}, then which one of the following is true?
(i) $\sup (A \cup B)=\sup \{\sup A, \sup B\}$
(ii) $\sup (A \cup B)=\sup A+\sup B$
(iii) $\sup (A \cup B)=\sup A \cdot \sup B$
(iv) $\sup (A \cup B)=\sup A \cup \sup B$
(c) There does not exist a rational number x such that $x^{2}=2$.(Write True or False)
(d) The set Q of rational numbers is uncountable. (Write True or False)
(e) If $I_{n}=\left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_{n}=$?
(f) The convergence of $\left\{\left|x_{n}\right|\right\}$ imply the convergence of $\left\{x_{n}\right\}$.
(Write True or False)
(g) What are the limit points of the sequence $\left\{x_{n}\right\}$, where $x_{n}=2+(-1)^{n}, n \in \mathbb{N}$?
(h) If $\left\{x_{n}\right\}$ is an unbounded sequence, then there exists a properly divergent subsequence. (Write True or False)
(i) A convergent sequence of real numbers is a Cauchy sequence.
(Write True or False)
(j) If $0<a<1$ then $\lim _{n \rightarrow \infty} a^{n}=$?
(k) The positive term series $\sum \frac{1}{n^{p}}$ is convergent if and only if
(i) $p>0$
(ii) $p>1$
(iii) $0<p<1$
(iv) $p \leq 1$

(Write correct one)
(l) Define conditionally convergent of a series.
(m) If $\left\{x_{n}\right\}$ is a convergent monotone sequence and the series $\sum_{n=1}^{\infty} y_{n}$ is convergent, then the series $\sum_{n=1}^{\infty} x_{n} y_{n}$ is also convergent.
(Write True or False)

Contd.
(n) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{m}\left(1+\frac{1}{n^{p}}\right)}$
where m and p are real numbers under which of the following conditions does the above series convergent?
(i) $m>1$
(ii) $0<m<1$ and $p>1$
(iii) $0 \leq m \leq 1$ and $0 \leq p \leq 1$
(iv) $m=1$ and $p>1$
(0) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers defined by $x_{1}=1, y_{1}=\frac{1}{2}$, $x_{n+1}=\frac{x_{n}+y_{n}}{2}$ and $y_{n+1}=\sqrt{x_{n} y_{n}} \forall n \in \mathbb{N}$ then which one of the following is true ?
(i) $\left\{x_{n}\right\}$ is convergent, but $\left\{y_{n}\right\}$ is not convergent
(ii) $\left\{x_{n}\right\}$ is not convergent, but $\left\{y_{n}\right\}$ is convergent
(iii) Both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent and $\lim _{n \rightarrow \infty} \cdot x_{n}>\lim _{n \rightarrow \infty} y_{n}$
(iv) Both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$
2. Answer any five parts : $2 \times 5=10$
(a) If a and b are real numbers and if $a<b$, then show that $a<\frac{1}{2}(a+b)<b$.
(b) Show that the sequence $\left\{\frac{2 n-7}{3 n+2}\right\}$ is bounded.
(c) If $\left\{x_{n}\right\}$ converges in \mathbb{R}, then show that $\lim _{n \rightarrow \infty} x_{n}=0$
(d) Show that the series $1+2+3+\ldots$, is not convergent.
(e) Test the convergence of the series:

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots .
$$

(f) State Cauchy's integral test of convergence.
(g) State the completeness property of \mathbb{R} and find the $\sup \left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
(h) Does the Nested Interval theorem hold for open intervals ? Justify with a counter example.

Answer any four parts :
(a) If x and y are real numbers with $x<y$, then prove that there exists a rational number r such that $x<r<y$.
(b) Show that a convergent sequence of real numbers is bounded.
(c) Prove that $\lim _{n \rightarrow \infty}\left(n^{\frac{1}{n}}\right)=1$.
(d) $\left\{x_{n}\right\}$ be a sequence of real numbers that converges to x and suppose that $x_{n} \geq 0$. Show that the sequence $\left\{\sqrt{x_{n}}\right\}$ of positive square roots converges and $\lim _{n \rightarrow \infty} \sqrt{x_{n}}=\sqrt{x}$.
(e) Show that every absolutely convergent series is convergent. Is the converse true ? Justify.
$4+1=5$
(f) Using comparison test, show that the series $\sum\left(\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right)$ is convergent.
(g) State Cauchy's root test. Using it, test the convergence of the series

$$
\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots .
$$

$$
1+4=5
$$

(h) Show that the sequence defined by the recursion formula

$$
u_{n+1}=\sqrt{3 u_{n}}, u_{1}=1
$$

is monotonically increasing and bounded. Is the sequence convergent ?

$$
2+2+1=5
$$

Answer any four parts :
(a) Show that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ which lies between 2 and 3 .
(b) (i) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are sequences of real numbers such that $x_{n} \leq y_{n} \leq z_{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}$.

Show that $\left\{y_{n}\right\}$ is convergent and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} z_{n} \tag{5}
\end{equation*}
$$

(ii) What is an alternating series ? State Leibnitz's test for alternating series. Prove that the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \infty$ is a conditionally convergent series. $1+1+3=5$
(c) Test the convergence of the series

$$
1+a+a^{2}+\ldots . .+a^{n}+\ldots \ldots
$$

(d) (i) Using Cauchy's condensation test, discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$
(ii) Define Cauchy sequence of real numbers. Show that the sequence $\left\{\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots \ldots+\frac{1}{n!}\right\} \quad$ is a
Cauchy sequence. $\quad 1+4=5$
(e) (i) Show that a convergent sequence of real numbers is a Cauchy sequence.
(ii) Using Cauchy's general principle of convergence, show that the sequence $\left\{1+\frac{1}{2}+\ldots . .+\frac{1}{n}\right\}$ is not convergent.
(f) (i) Prove that every monotonically increasing sequence which is bounded above converges to its least upper bound.

(ii) Show that the limit if exists of a convergent sequence is unique.
(g) State and prove p-series.
(h) (i) Test the convergence of the series
$x+\frac{3}{5} x^{2}+\frac{8}{10} x^{3}+\ldots \ldots+\frac{n^{2}-1}{n^{2}+1} x^{n}+\ldots . .(x>0)$
(ii) If $\left\{x_{n}\right\}$ is a bounded increasing sequence then show that $\lim _{n \rightarrow \infty} x_{n}=\sup \left\{x_{n}\right\}$ 5
(i) (i) Show that a bounded sequence of real numbers has a convergent subsequence.
(ii) State and prove Nested Interval theorem.
(j) (i) Show that Cauchy sequence of real numbers is bounded.
(ii) Test the convergence of the series
$x^{2}+\frac{2^{2}}{3 \cdot 4} x^{4}+\frac{2^{2} \cdot 4^{2}}{3 \cdot 4 \cdot 5 \cdot 6} x^{6}+\frac{2^{2} \cdot 4^{2} \cdot 6^{2}}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} x^{8}+\ldots \ldots . .(x>0)$

